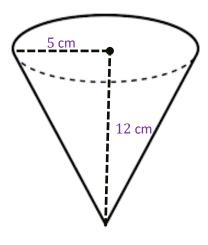

Ch 4 - 5 Volume of a Cone, Cylinder, Sphere Student Note Taker

Given the formulas for the volume of a cylinder, cone and sphere, where r is _____ and h is

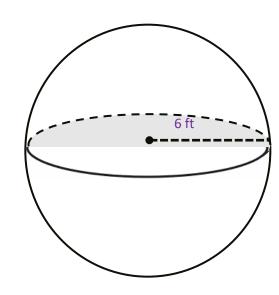
V = _____


V = _____

V = _____

Examples:

Find the volume of the figure shown.

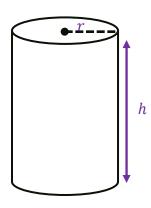

Since this is a _____, the formula for volume is

Since this is a _____, the formula for volume is

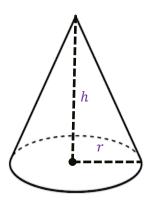
8 in
7 in

The radius is _____ and the height is _____, so r = ___ and h = ____. $V = \pi$ (___)^2(___) = ___(7) π = ___ π = ____

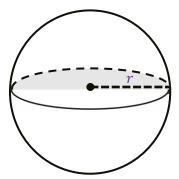
www.prealgebrateachers.com


Since this is a _____, the formula for volume is

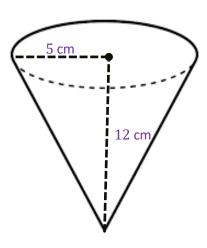
The radius is $___$, so $r = __$.

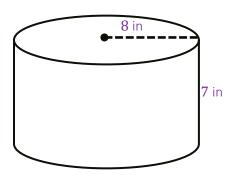

 $V = \frac{4}{3}\pi \left(_{)}^{3} = \frac{4}{3} \left(_{)}^{3} = \frac{\pi}{3} \left(_{)}^{3} = \frac{\pi}{3} \right)$

Ch 4 - 5 Volume of a Cone, Cylinder, Sphere Teacher Notes


Given the formulas for the volume of a cylinder, cone and sphere, where *r* is <u>radius</u> and *h* is <u>height</u>.

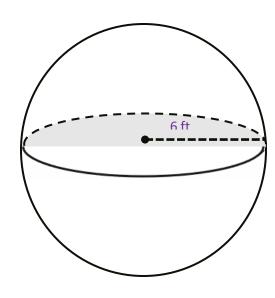
cylinder $\forall = \pi r^2 h$


 $V = \frac{\frac{1}{3}\pi r^2 h}{\frac{1}{3}\pi r^2 h}$


sphere $V = \frac{\frac{4}{3}\pi r^3}{}$

Examples:

Find the volume of the figure shown.


Since this is a $\frac{\text{cone}}{V}$, the formula for volume is $\frac{V}{r} = \frac{1}{3}\pi r^2 h$

Since this is a <u>cylinder</u>, the formula for volume is $V = \pi r^2 h$

The radius is __8 in __ and the height is __7 in __, so $r = _8$ and $h = _7$. $V = \pi (_8)^2 (_7) = _64 (_7)\pi = _448 \pi = _1407.4 in^3$

www.prealgebrateachers.com

Since this is a <u>sphere</u>, the formula for volume is $V = \frac{4}{3}\pi r^3$

The radius is $_{\bf 6ft}$, so $r = _{\bf 6}$.

$$V = \frac{4}{3}\pi \left(\frac{6}{3}\right)^3 = \frac{4}{3}\left(\frac{216}{3}\right)\pi = \frac{288}{3}\pi = \frac{904.78 \, ft^3}{3}$$